Aufgabenkatalog Algebra – Sommersemester 2019

Aufgaben zum Thema Lineare Unabhängigkeit, Erzeugnis

Dr. Anton Malevich, Leonard Bechtel, Julian Maas

Aufgabe 1 (1)

Überprüfen Sie, ob die folgenden Vektoren aus dem \mathbb{R}^3 linear unabhängig sind. Berechnen Sie jeweils die Linearkombinationen $u_1 := 3v_1 + 2v_2 - 4v_3$ und $u_2 := 2v_1 - 3v_2 + 5v_3$.

a)
$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, v_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

a)
$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, v_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$
 d) $v_1 = \begin{pmatrix} 2 \\ 4 \\ 4 \end{pmatrix}, v_2 = \begin{pmatrix} -3 \\ 2 \\ -2 \end{pmatrix}, v_3 = \begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix}$

b)
$$v_1 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, v_2 = \begin{pmatrix} 0 \\ -2 \\ 0 \end{pmatrix}, v_3 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

b)
$$v_1 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, v_2 = \begin{pmatrix} 0 \\ -2 \\ 0 \end{pmatrix}, v_3 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
 e) $v_1 = \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} -1 \\ 3 \\ 1 \end{pmatrix}, v_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

c)
$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, v_2 = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}, v_3 = \begin{pmatrix} -4 \\ -1 \\ 1 \end{pmatrix}$$
 f) $v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, v_3 = \begin{pmatrix} 2 \\ 0 \\ 5 \end{pmatrix}$

f)
$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, v_3 = \begin{pmatrix} 2 \\ 0 \\ 5 \end{pmatrix}$$

Begründen Sie, wieso niemals mehr als drei dreidimensionale Vektoren linear unabhängig sein können. Verallgemeineren Sie die Argumentation auf n-dimensionale Vektoren.

Die Menge $S_1:=\left\{a,b,c:a,b,c\in\mathbb{R}^3\right\}$ sei linear unabhängig. Zeigen Sie, dass dann auch die Menge $S_2 := \{a, a+b, a+b+c\}$ linear unabhängig ist.

Aufgabe 3 (3) Lineare Unabhängigkeit

Es seien $v_1, ..., v_n$ paarweise verschiedene Vektoren in einem \mathbb{R} -Vektorraum V. Welche der folgenden beiden Aussagen ist immer richtig und welche im Allgemeinen falsch? Geben Sie einen Beweis oder ein Gegenbeispiel an.

- a) Genau dann sind v_1 und v_2 linear unabhängig, wenn $v_1 + v_2$ und $v_1 v_2$ linear unabhängig sind.
- b) Sind je n-1 Vektoren aus der Menge $M:=\{v_1,...,v_n\}$ linear unabhängig, so ist Mlinear unabhängig.

Aufgabe 4 (1)

Gegeben sei der Vektorraum \mathbb{R}^2 und die folgenden Teilmengen:

a)
$$M_1 := \{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \}$$

b)
$$M_2 := \{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \end{pmatrix} \}$$
 c) $M_3 := \{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 4 \end{pmatrix} \}$

c)
$$M_3 := \{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 4 \end{pmatrix} \}$$

Zecihnen Sie die Erzeugnisse dieser Mengen in den \mathbb{R}^2 . Was bedeutet lineare Unabhängigkeit zweier Vektoren im \mathbb{R}^2 geometrisch?

Aufgabe 5(2)

Gegeben seien die Polynomfunktionen

$$f_1 = 2x^2 + 1$$
, $f_2 = x^2 - x$ und $f_3 = 2x + 1$

aus Abb (\mathbb{R}, \mathbb{R}) . Überprüfen Sie, ob f_1, f_2, f_3 linear unabhängig sind. Das heißt, rechnen Sie nach, ob aus $a \cdot f_1 + b \cdot f_2 + c \cdot f_3 = 0$ folgt, dass a = b = c = 0 gilt.

Tipp: Stellen Sie zunächst die obige Gleichung auf und multiplizieren aus. Dann klammern Sie die verschiedenen x-Potenzen aus. Daraus können Sie dann ein LGS ableiten.